Keterkaitan Parameter Oseanografi dengan Fitoplankton di Perairan Pesisir Maros Sulawesi Selatan

Authors

  • Rahmadi Tambaru Program Studi Ilmu Kelautan, Universitas Hasanuddin
  • Andi Iqbal Burhanuddin Program Studi Ilmu Kelautan, Universitas Hasanuddin
  • Muhammad Anshar Amran Program Studi Ilmu Kelautan, Universitas Hasanuddin
  • Arniati Massinai Program Studi Ilmu Kelautan, Universitas Hasanuddin
  • Abdul Haris Program Studi Ilmu Kelautan, Universitas Hasanuddin
  • Chair Rani Program Studi Ilmu Kelautan, Universitas Hasanuddin

DOI:

https://doi.org/10.33005/envirotek.v14i2.34

Keywords:

Parameter Oseanografi, Fitoplankton, Perairan Pesisir, Laut

Abstract

Penelitian ini bertujuan melakukan analisis keterkaitan parameter oseanografi dengan fitoplankton di perairan pesisir Maros, Sulawesi Selatan. Penelitian dilakukan pada dua zona yaitu zona pesisir, dan zona Sungai (S3). Untuk zona pesisir dibagi menjadi tiga bagian: zona pantai (A), zona pertengahan (B), dan zona laut lepas (C). Analisis Cluster dan PCA digunakan untuk mengevaluasi masing-masing parameter lingkungan, demikian pula keterkaitannya dengan fitoplankton. Hasil penelitian menunjukkan bahwa parameter penciri di zona A seperti kecerahan, nitrit dan amoniak masih mendukung aktivitas fitoplankton. Hal ini terlihat dari nilai produktivitas primer fitoplankton yang tinggi. Sebaliknya pada zona C, dukungan parameter-parameter itu terdeteksi lemah terhadap aktivitas fitoplankton, hal itu terlihat dari rendahnya nilai produktivitas primer fitoplankton. Di zona B, parameter-parameter penciri terkadang sama di zona A, namun lebih sejalan dengan zona C. Artinya bahwa nilai produktivitas primer fitoplankton juga tinggi. Berdasarkan hal itu, fitoplankton masih dapat beraktivitas dengan baik karena parameter oseanografi masih bersesuaian dengan kehidupannya.

Downloads

Download data is not yet available.

References

Ajani, P. A., Davies, C. H., Eriksen, R. S., & Richardson, A. J. (2020). Global warming impacts micro-phytoplankton at a long-term Pacific Ocean coastal station. Frontiers in Marine Science, 7, 576011.

Álvarez-Vázquez, M. A., Prego, R., Ospina-Alvarez, N., Caetano, M., Bernardez, P., Doval, M., Filgueiras, A. V, & Vale, C. (2016). Anthropogenic changes in the fluxes to estuaries: Wastewater discharges compared with river loads in small rias. Estuarine, Coastal and Shelf Science, 179, 112–123.

Buana, S., Tambaru, R., Selamat, M. B., Lanuru, M., & Massinai, A. (2021). The role of salinity and Total Suspended Solids (TSS) to abundance and structure of phytoplankton communities in estuary Saddang Pinrang. IOP Conference Series: Earth and Environmental Science, 860(1), 12081.

Davis, K. A., Banas, N. S., Giddings, S. N., Siedlecki, S. A., MacCready, P., Lessard, E. J., Kudela, R. M., & Hickey, B. M. (2014). Estuary‐enhanced upwelling of marine nutrients fuels coastal productivity in the US P acific N orthwest. Journal of Geophysical Research: Oceans, 119(12), 8778–8799.

Gilbert, M., Needoba, J., Koch, C., Barnard, A., & Baptista, A. (2013). Nutrient loading and transformations in the Columbia River estuary determined by high-resolution in situ sensors. Estuaries and Coasts, 36(4), 708–727.

Irby, I. D., Friedrichs, M. A. M., Da, F., & Hinson, K. E. (2018). The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences, 15(9), 2649–2668.

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202

Khan, I. A., Ghazal, L., Arsalan, M. H., Siddiqui, M. F., & Kazmi, J. H. (2015). Assessing spatial and temporal variability in phytoplankton concentration through chlorophyll-a satellite data: A case study of northern Arabian Sea. Pak. J. Bot, 2, 797–805.

Kheireddine, M., Mayot, N., Ouhssain, M., & Jones, B. H. (2021). Regionalization of the Red Sea based on phytoplankton phenology: a satellite analysis. Journal of Geophysical Research: Oceans, 126(10), e2021JC017486.

Kralj, M., De Vittor, C., Comici, C., Relitti, F., Auriemma, R., Alabiso, G., & Del Negro, P. (2016). Recent evolution of the physical–chemical characteristics of a Site of National Interest—the Mar Piccolo of Taranto (Ionian Sea)—and changes over the last 20 years. Environmental Science and Pollution Research, 23(13), 12675–12690.

Leng, P., Zhang, Q., Li, F., Kulmatov, R., Wang, G., Qiao, Y., Wang, J., Peng, Y., Tian, C., & Zhu, N. (2021). Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia. Environmental Pollution, 284, 117405.

Mikaelyan, A. S., Mosharov, S. A., Kubryakov, A. A., Pautova, L. A., Fedorov, A., & Chasovnikov, V. K. (2020). The impact of physical processes on taxonomic composition, distribution and growth of phytoplankton in the open Black Sea. Journal of Marine Systems, 208, 103368.

Mishra, R. K., Jena, B., Venkataramana, V., Sreerag, A., Soares, M. A., & AnilKumar, N. (2022). Decadal changes in global phytoplankton compositions influenced by biogeochemical variables. Environmental Research, 206, 112546.

Mohammed, A. A., Ahmed, E. A., Saeed, S. M., Dawah, A. M., & Salah El Din, R. A. (2018). SEASONAL VARIATIONS IN PRIMARY PRODUCTIVITY AND ITS RELATION TO SOME PHYSICO-CHEMICAL PROPERTIES OF WATER AT AL-ABBASSA FISH FARM. Al-Azhar Bulletin of Science, 29(1–C), 57–66.

Neri, F., Romagnoli, T., Accoroni, S., Campanelli, A., Marini, M., Grilli, F., & Totti, C. (2022). Phytoplankton and environmental drivers at a long-term offshore station in the northern Adriatic Sea (1988–2018). Continental Shelf Research, 242, 104746.

Papry, R. I., Omori, Y., Fujisawa, S., Al Mamun, M. A., Miah, S., Mashio, A. S., Maki, T., & Hasegawa, H. (2020). Arsenic biotransformation potential of marine phytoplankton under a salinity gradient. Algal Research, 47, 101842.

Petrou, K., Kranz, S. A., Trimborn, S., Hassler, C. S., Ameijeiras, S. B., Sackett, O., Ralph, P. J., & Davidson, A. T. (2016). Southern Ocean phytoplankton physiology in a changing climate. Journal of Plant Physiology, 203, 135–150.

Stewart, J., Miller, M., Audo, C., & Stewart, G. (2012). Using cluster analysis to identify patterns in students’ responses to contextually different conceptual problems. Physical Review Special Topics - Physics Education Research, 8(2), 020112. https://doi.org/10.1103/PhysRevSTPER.8.020112

Tambaru, R., BURHANUDDIN, A. I., MASSINAI, A., & AMRAN, M. A. (2021). Detection of marine microalgae (phytoplankton) quality to support seafood health: A case study on the west coast of South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 22(11).

Weston, N. B., Giblin, A. E., Banta, G. T., Hopkinson, C. S., & Tucker, J. (2010). The effects of varying salinity on ammonium exchange in estuarine sediments of the Parker River, Massachusetts. Estuaries and Coasts, 33(4), 985–1003.

Xu, S., Liu, Y., Fan, J., Xiao, Y., Qi, Z., & Lakshmikandan, M. (2022). Impact of salinity variation and silicate distribution on phytoplankton community composition in Pearl River estuary, China. Ecohydrology & Hydrobiology.

Downloads

Published

2022-10-31

How to Cite

Tambaru, R. ., Iqbal Burhanuddin, A. ., Anshar Amran, M. ., Massinai, A. ., Haris, A. ., & Rani, C. . . (2022). Keterkaitan Parameter Oseanografi dengan Fitoplankton di Perairan Pesisir Maros Sulawesi Selatan. Envirotek : Jurnal Ilmiah Teknik Lingkungan, 14(2), 197–200. https://doi.org/10.33005/envirotek.v14i2.34