KILANG BIOMASSA DARI LIMBAH PERTANIAN DAN PERKEBUNAN UNTUK PEMBANGUNAN BERKELANJUTAN

Authors

  • Lely Mardiyanti Universitas Negeri Malang
  • Muhammad Shalahuddin Rahmansyah Sekolah Tinggi Teknik Industri Turen
  • Sukma Hadi Anugerah Sekolah Tinggi Teknik Industri Turen

DOI:

https://doi.org/10.33005/envirotek.v13i2.144

Keywords:

Kilang biomassa, Limbah Pertanian dan Perkebunan, Lignoselulosa

Abstract

Kilang biomassa dari limbah pertanian dan perkebunan adalah strategi baru masa depan untuk mewujudkan sustainabilitas, tetapi sebagian besar masih dalam tahap konseptual. Kilang biomassa akan memungkinkan masyarakat untuk mengubah limbah pertanian dan perkebunan mereka menjadi energi baru terbarukan bernilai tambah, senyawa biokimia, dan pupuk. Beberapa konsep kilang biomassa dari limbah pertanian dan perkebunan telah dikembangkan, tetapi hanya sedikit yang telah direalisasikan secara komersial karena terhambat oleh biaya dan sedikit kepercayaan pada teknologi baru, hasil dan keuntungan yang diharapkan, dan keandalan pengoperasian. Oleh karena itu, dalam publikasi ini dipaparkan konsep kilang biomassa secara umum, jabaran limbah pertanian dan perkebunan di Indonesia yang potensial digunakan sebagai bahan baku kilang biomassa beserta tahapan pembuatannya, prospek masa depan produk-produk yang dihasilkan, dan hasil analisis mengenai tantangan-tantangan yang akan dihadapi pada pengembangan yang lebih lanjut.

Downloads

Download data is not yet available.

References

Abdullah, K. (2006). Biomass Energy Potentials And Utilization In Indonesia. Laboratory of Energy and Agricultural Electrification, Department of Agricultural Engineering, IPB and Indonesian Renewable Energy Society [IRES], Bogor., (October), 1–12.

Agustian, A. (2015). Pengembangan Bioenergi di Sektor Pertanian: Potensi dan Kendala Pengembangan Bioenergi Berbahan Baku Ubi Kayu. Analisis Kebijakan Pertanian, 13(1), 19–38. http://ejurnal.litbang.pertanian.go.id/index.php/akp/article/view/4220

Ashraf, M. T., Schmidt, J. E., Kujawa, J., Kujawski, W., & Arafat, H. A. (2017). One-dimensional modeling of pervaporation systems using a semi-empirical flux model. Separation and Purification Technology, 174, 502–512. https://doi.org/10.1016/j.seppur.2016.10.043

Auroux, D., & Groza, V. (2017). Optimal parameters identification and sensitivity study for abrasive waterjet milling model. Inverse Problems in Science and Engineering, 25(11), 1560–1576. https://doi.org/10.1080/17415977.2016.1273916

Axelsson, L., Franzén, M., Ostwald, M., Berndes, G., Lakshmi, G., & Ravindranath, N. H. (2012). Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels, Bioproducts and Biorefining, 6(3), 246–256. https://doi.org/10.1002/bbb

Badger, P. C. (2002). Ethanol From Cellulose : A General Review. 17–21.

Boedoyo, M. S. (2015). Prospek Pemanfaatan Bioethanol Sebagai Pengganti BBM di Indonesia (Issue September 2014). https://www.researchgate.net/profile/M_Boedoyo/publication/276412634_Prospek_Pemanfaatan_Bioethanol_Sebagai_Pengganti_BBM_di_Indonesia/links/557a8e0f08ae75363757086f/Prospek-Pemanfaatan-Bioethanol-Sebagai-Pengganti-BBM-di-Indonesia.pdf

Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass : A Review. Enzyme Research, 2011(March), 1–17. https://doi.org/10.4061/2011/787532

Budarin, V. L., Zhao, Y., Gronnow, M. J., Shuttleworth, P. S., Breeden, S. W., MacQuarrie, D. J., & Clark, J. H. (2011). Microwave-mediated pyrolysis of macro-algae. Green Chemistry, 13(9), 2330–2333. https://doi.org/10.1039/c1gc15560a

Bura, R., Mansfield, S. D., Saddler, J. N., & Bothast, R. J. (2002). SO 2 -Catalyzed Steam Explosion of Corn Fiber for Ethanol Production. Applied Biochemistry and Biotechnology, 98(1–9), 59–60. https://doi.org/10.1385/ABAB:98-100:1-9:59

Cara, C., Ruiz, E., Ballesteros, M., Manzanares, P., Negro, M. J., & Castro, E. (2008). Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 87(6), 692–700. https://doi.org/10.1016/j.fuel.2007.05.008

Chang, V. S. & Holtzapple, M. T. (2000). Affecting Biomass Enzymatic Reactivity. Applied Biochemistry and Biotechnology, 84(1–9), 5–37. https://doi.org/10.1385/ABAB:84-86:1-9:5

Chen, J., Bai, J., Li, H., Chang, C., & Fang, S. (2015). Prospects for Bioethanol Production from Macroalgae. Trends in Renewable Energy, 1(3), 185–197. https://doi.org/10.17737/tre.2015.1.3.0016

Cherubini, F. (2010). The biorefinery concept : Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

Dani, S., & Wibawa, A. (2018). Challenges and policy for biomass energy in Indonesia. International Journal of Business, Economics, and Law, 15(5), 41–47.

De Buck, V., Polanska, M., & Van Impe, J. (2020). Modeling Biowaste Biorefineries: A Review. Frontiers in Sustainable Food Systems, 4(February). https://doi.org/10.3389/fsufs.2020.00011

Deenanath, E. D., Iyuke, S., & Rumbold, K. (2012). The Bioethanol Industry in Sub-Saharan Africa : History, Challenges, and The Bioethanol Industry in Sub-Saharan Africa : History, Challenges, and Prospects. Journal of Biomedicine and Biotechnology, 2012(March), 1–11. https://doi.org/10.1155/2012/416491

Díaz-Reinoso, B., Moure, A., González, J., & Domínguez, H. (2017). A membrane process for the recovery of a concentrated phenolic product from white vinasses. Chemical Engineering Journal, 327, 210–217. https://doi.org/10.1016/j.cej.2017.06.088

European Commission. (2006). Biofuels in the European Union A vision for 2030 and beyond. In the final report of the Biofuels Research Advisory Council.

Fang, X., Shen, Y., Zhao, J., Bao, X., & Qu, Y. (2010). Bioresource Technology Status and prospect of lignocellulosic bioethanol production in China. Bioresource Technology, 101(13), 4814–4819. https://doi.org/10.1016/j.biortech.2009.11.050

Fauzi, A., & Oxtavianus, A. (2014). The Measurement of Sustainable Development in Indonesia. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 15(1), 68. https://doi.org/10.23917/jep.v15i1.124

Fava, F., Totaro, G., Diels, L., Reis, M., Duarte, J., Carioca, O. B., Poggi-Varaldo, H. M., & Ferreira, B. S. (2015). Biowaste biorefinery in Europe: Opportunities and research & development needs. New Biotechnology, 32(1), 100–108. https://doi.org/10.1016/j.nbt.2013.11.003

Feed, F., & Materials, B. C. (2007). IEA Bioenergy 29th update. Biomass and Bioenergy, 31(8), I–VII. https://doi.org/10.1016/s0961-9534(07)00106-7

Forster-Carneiro, T., Berni, M. D., Dorileo, I. L., & Rostagno, M. A. (2013). Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resources, Conservation and Recycling, 77, 78–88. https://doi.org/10.1016/j.resconrec.2013.05.007

Goldemberg, J. (2014). Ethanol for a Sustainable Energy Future Ethanol for a Sustainable Energy Future. November. https://doi.org/10.1126/science.1137013

Hackl, R., & Harvey, S. (2010). Opportunities for process integrated biorefinery concepts in the chemical cluster in Stenungsund. 1–74.

Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Bio-ethanol - the fuel of tomorrow from the residues of today. Trends in Biotechnology, 24(12), 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. August. https://doi.org/10.1073/pnas.0604600103

Idi, A., & Mohamad, S. E. (2011). Interdisciplinary Journal of Contemporary Research in Business Bioethanol From Second Generation Feedstock (Lignocellulose Biomass). Interdisciplinary Journal of Contemporary Research in Business, 3(8), 919–935. http://www.journal-archieves-13.webs.com/919-935.pdf

Jung, K. A., Lim, S. R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135(1), 182–190. https://doi.org/10.1016/j.biortech.2012.10.025

Kamm, B., & Gruber, P. R. (2006). Handbook of Fuels Beyond Oil and Gas : The Methanol Economy Bailey’s Industrial Oil and Fat Products Oil Refineries in the 21st Century. In Biorefineries – Industrial Processes and Products (Vol. 1).

Kang, A., & Lee, T. S. (2015). Converting Sugars to Biofuels: Ethanol and Beyond. Bioengineering, 2(4), 184–203. https://doi.org/10.3390/bioengineering2040184

Karimi, K., & Taherzadeh, M. J. (2007). Enzyme Based Hydrolysis Processes for Ethanol From Lignocellulosic Materials: a Review. In BioResources (Vol. 2, Issue 4). http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_2_4_707_738_Taherzadeh_Karimi_EnzymeBased_Hydrol_Ethanol_Review/81

Katzen, R., & Schell, D. J. (2008). Lignocellulosic Feedstock Biorefinery: History and Plant Development for Biomass Hydrolysis. Biorefineries-Industrial Processes and Products: Status Quo and Future Directions, 1, 129–138. https://doi.org/10.1002/9783527619849.ch6

Kementrian PPN, B. (2020). PEDOMAN TEKNIS PENYUSUNAN RENCANA AKSI TUJUAN PEMBANGUNAN BERKELANJUTAN (TPB)/ SUSTAINABLE DEVELOPMENT GOALS (SDGs). PEDOMAN TEKNIS PENYUSUNAN RENCANA AKSI - EDISI II TUJUAN PEMBANGUNAN BERKELANJUTAN/ SUSTAINABLE DEVELOPMENT GOALS (TPB/SDGs), 53(9), 21–25. http://www.elsevier.com/locate/scp

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g

Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., & Laopaiboon, P. (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technology, 100(18), 4176–4182. https://doi.org/10.1016/j.biortech.2009.03.046

Li, K., Liu, S., & Liu, X. (2014). An overview of algae bioethanol production. International Journal of Energy Research, 38(8), 965–977. https://doi.org/10.1002/er.3164

Liu, Z., & Eden, M. (2014). Biorefinery Principles, Analysis, and Design. Sustainable Bioenergy Production, April, 447–476. https://doi.org/10.1201/b16764-27

Mateos-Salvador, F., Sadhukhan, J., & Campbell, G. M. (2011). The normalized Kumaraswamy breakage function: A simple model for wheat roller milling. Powder Technology, 208(1), 144–157. https://doi.org/10.1016/j.powtec.2010.12.013

Mezhericher, M., Levy, A., & Borde, I. (2012). Three-Dimensional Spray-Drying Model Based on Comprehensive Formulation of Drying Kinetics. Drying Technology, 30(11–12), 1256–1273. https://doi.org/10.1080/07373937.2012.686136

Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Bioresource Technology Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104(1), 342–348. https://doi.org/10.1016/j.biortech.2011.10.059

Mohr, A., & Raman, S. (2013). Lessons from first-generation biofuels and implications for the sustainability appraisal of second-generation biofuels $. Energy Policy, 63, 114–122. https://doi.org/10.1016/j.enpol.2013.08.033

Morthensen, S. T., Zeuner, B., Meyer, A. S., Jørgensen, H., & Pinelo, M. (2018). Membrane separation of enzyme-converted biomass compounds: Recovery of xylose and production of gluconic acid as a value-added product. Separation and Purification Technology, 194, 73–80. https://doi.org/10.1016/j.seppur.2017.11.031

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025

Muruke, M. H. S., Hosea, K. M., Pallangyo, A., & Heijthuijsen, J. H. F. G. (2006). Production of lactic acid from waste sisal stems using a Lactobacillus isolate. Discovery and Innovation, 18(1), 5–10. https://doi.org/10.4314/dai.v18i1.15719

Naik, S. N., Goud, V. V, Rout, P. K., & Dalai, A. K. (2010). Production of first and second-generation biofuels : A comprehensive review. 14, 578–597. https://doi.org/10.1016/j.rser.2009.10.003

Nitayavardhana, S., Shrestha, P., Rasmussen, M. L., Lamsal, B. P., van Leeuwen, J. (Hans), & Khanal, S. K. (2010). Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresource Technology, 101(8), 2741–2747. https://doi.org/10.1016/j.biortech.2009.10.075

Nurdyastuti, I. (2004). Teknologi Proses Produksi Bio–Ethanol. Prospek Pengembangan Bio–Fuel sebagai Substitusi Bahan Bakar Minyak. http://www.geocities.ws/markal_bppt/publish/biofbbm/biindy.pdf

Ogino, C., Kahar, P., Prasetya, B., & Kondo, A. (2017). Bio-refinery Strategy for Fuel Production in Indonesia About Kobe and our University. 8, 1–29.

Petrova, P., & Ivanova, V. (2017). Perspectives for the Production of Bioethanol from Lignocellulosic Materials. 2818(November). https://doi.org/10.1080/13102818.2010.10817894

Processes, E. H., & Ethanol, F. O. R. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review (Vol. 2).

Ra, C. H., Kim, M. J., Jeong, G. T., & Kim, S. K. (2016). Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor. Bioprocess and Biosystems Engineering, 40(3), 373‒381. https://doi.org/10.1007/s00449-016-1705-7

Redman, A. L., Bailleres, H., Perré, P., Carr, E., & Turner, I. (2017). A relevant and robust vacuum-drying model applied to hardwoods. Wood Science and Technology, 51(4), 701–719. https://doi.org/10.1007/s00226-017-0908-7

Rinaldi, R., & Schüth, F. (2009). Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes. ChemSusChem, 2(12), 1096–1107. https://doi.org/10.1002/cssc.200900188

Rodríguez, G., Lama, A., Rodríguez, R., Jiménez, A., Guillén, R., & Fernández-Bolaños, J. (2008). Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology, 99(13), 5261–5269. https://doi.org/10.1016/j.biortech.2007.11.027

Song, H., Dotzauer, E., Thorin, E., & Yan, J. (2013). Techno-economic analysis of an integrated biorefinery system for poly-generation of power, heat, pellet, and bioethanol. https://doi.org/10.1002/er

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production : a review q. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

Szulczyk, K. R., Mccarl, B. A., & Cornforth, G. (2010). Market penetration of ethanol. 14, 394–403. https://doi.org/10.1016/j.rser.2009.07.007

Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production : A Review. International Journal of Molecular Sciences, 9(9), 1621–1651. https://doi.org/10.3390/ijms9091621

Tengerdy, R. P., & Szakacs, G. (2003). Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal, 13(2–3), 169–179. https://doi.org/10.1016/S1369-703X(02)00129-8

Tien, C., Ramarao, B. V., & Yasarla, R. (2014). A blocking model of membrane filtration. Chemical Engineering Science, 111, 421–431. https://doi.org/10.1016/j.ces.2014.01.022

Vane, L. M. (2005). A review of pervaporation for product recovery from biomass fermentation processes. Journal of Chemical Technology and Biotechnology, 80(6), 603–629. https://doi.org/10.1002/jctb.1265

Vea, E. B., Romeo, D., & Thomsen, M. (2018). Biowaste Valorisation in a Future Circular Bioeconomy. Procedia CIRP, 69(May), 591–596. https://doi.org/10.1016/j.procir.2017.11.062

Walker, G. M. (2010). Bioethanol : Science and Technology of Fuel Alcohol. bookboon.com. https://doi.org/10.1007/s10551-016-3169-8

WATKINS, K. (2001). Ethanols Sunny Day. Chemical & Engineering News, 79(30), 21. https://doi.org/10.1021/cen-v079n030.p021

Wiratmaja, I. G., Bagus, I. G., Kusuma, W., & Winaya, I. N. S. (2011). Pembuatan Etanol Generasi Kedua Dengan Memanfaatkan Limbah Rumput Laut Eucheuma Cottonii Sebagai Bahan Baku. Jurnal Ilmiah Teknik Mesin Cakra, 5(1), 75‒84. https://ojs.unud.ac.id/index.php/jem/article/view/2353

Wongjewboot, I., Kangsadan, T., & Rice, A. (2010). Ethanol Production From Rice Straw Using Ultrasonic Pretreatment (Issue 2010 International Conference on Chemistry and Chemical Engineering (ICCCE 2010)). https://doi.org/10.1109/ICCCENG.2010.5560351

Xuan, T. D., Sakanishi, K., & Nakagoshi, N. (2015). Biorefinery : Concepts, Current Status, and Development Trends BIOREFINERY : CONCEPTS, CURRENT STATUS, AND DEVELOPMENT TRENDS. January 2012.

Yanagisawa, M., Nakamura, K., Ariga, O., & Nakasaki, K. (2011). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry, 46(11), 2111–2116. https://doi.org/10.1016/j.procbio.2011.08.001

Yukyeong, J. J., Jeong, C. G., & Kim, S. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation ( SSF ) from seaweed, Saccharina japonica. 11–18. https://doi.org/10.1007/s00449-011-0611-2

Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68. https://doi.org/10.3965/j.issn.1934-6344.2009.03.051-068

Downloads

Published

2021-10-29

How to Cite

Mardiyanti, L. ., Shalahuddin Rahmansyah, M. ., & Hadi Anugerah, S. (2021). KILANG BIOMASSA DARI LIMBAH PERTANIAN DAN PERKEBUNAN UNTUK PEMBANGUNAN BERKELANJUTAN. Envirotek : Jurnal Ilmiah Teknik Lingkungan, 13(2), 76–85. https://doi.org/10.33005/envirotek.v13i2.144